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AUTOMATED TORSION PENDULUM:
CONTROL AND DATA COLLECTION /PEDUCTION

USING A DESKTOP COMPUTER

John B. Emns and John K. Glilham
Polymer Materials Program

Department of Chemical Engineering
Princeton University

Princeton, Now Jersey 08544

A torsion pendulum Interfaced vith a desktop computer
form an automated Instrument for dynamic mechanical
characterization of polymeric materials. The com-
puter controls the initiation of the oscillations,.
collects the digitized data and calculates the *hear
modulus and loss modualus from the damped oscilla-
tions. utilizing one of four methods of analysis:
1) fitting the data points about the maxima and
minima to a quadratic equation to obtain their times
and amplitudes, from which the frequency and log-
arithmic decrement can be calculated; 2) fitting
the data to a four-parameter equation of motion by a
least squares technique; 3) fitting the data to a
six-parameter solution to the equation of motion by
a non-linear least squares technique; and 4) taking
the Fourier transform of the data, which results In
a maximum at the frequency of the oscillation whose
amplitude is Inversely proportional to the damping
coefficient. The advantages and disadvantages of
each method are discussed and the results of tor-
sion pendulum and torsion braid analysis (TEA) ex-
periments are compared.

The torsion pendulum has proven to be an important and versa-
tile tool In the study of dynamic mechanical properties of mater-
ials. In our laboratory It has been applied primarily to poly-
mers, although elsewhere it has been used with a wide variety of
materials, ranging from liquids to metals and ceramics. The basis
of Its wide appeal Iles In Its fundamental simplicity: Informa-
tion about the complex modulus of the material under Investigation
Is obtained by simply observing the decaying oscillations of the
pendulum. After the pendulum Is set In motion, It Is Permitted to
oscillate freely at its resonant frequency while the amplitude of

f the oscillatory wave decays. .1n an unautomated system It is a
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relatively simple but tedious task to calculate the shear modulus
and the loss modulus from the period of the oscillation, its log-
arithmic decrement and the geometric constants of the system. The
independent variable in the Investigation of dynamic mechanical
properties of a material Is often temperature, but it can also be
time, as in the case of chemically reactive or physically aging
systems.

A variation of the torsion pendulum, torsional braid analysis
(TBA), utilizes a supported specimen so that the dynamic mechani-
cal properties of a sample can be monitored in the liquid as well
as the solid states (1. 2). An inert vultifilamented glass braid
is impregnated with the -ample (usually in its liquid state or in
solution). The observed dynamic mechanical properties are rela-
tive due to the composite nature and complex geometry of the spec-
imen.

The purpose of this paper is to describe an automated torsion
pendulum controlled by a desktop computer, to discuss four separ-
ate methods of data analysis, and to compare the results of a tor-

resin.

Instrumentation

A schematic diagram of the torsion pendulum is shown in Fig-
ure 1. Free oscillations are initiated by an angular step-dis-
placement of the upper member of the pendulum. The response of
the lower member is a damped wave at the natural frequency of the
system, and therefore is related to the physico-mechanical proper-
ties of the specimen.

The damped oscillations are converted to an electrical signal
by a non-drag optical transducer: light Is passed through a pair
of polarizers, one of which serves as the inertial mass of the
pendulum, to a photo-detector. The temperature, humidity and gas
(usually helium) surrounding the specimen are closely controlled.

The torsion pendulum has been Interfaced with a digital desk-
top computer (Hewlett Packard 98253) shown in the system diagram
Figure 2 (3). The motors which align the specimen and initiate
the waves are under computer control via the scanner (RP 3493A)
and relays. At present the direction of the temperature scan and
the status of the experiment (whether to hold, reverse, or termi-
nate) at either of the temperature limits set by the programmer
(Eurotherm Corp.) are under computer control as well, but the rate
of temperature change and the limits are not. The amplified
thermocouple and wave signals are digitized by a high speed digi-
tel voltmeter (HP 3437A) whose scan rate is programmable, and the
scanner supervises the I/O activity. The computer calculates the

* frequency and damping parameters from the raw data and plots the
dynamic mechanical properties of the specimen as a function of
temperature and/or time. A photograph of the equipment ts shown
in Figure 3. A coemrcial version of the automated torsion
pendulum/torsion braid analyzer is available from Plastics Analysis
Instrtafnts, Inc., P.O. BOX 408, Princeton, Vkw Jersey.
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For each damped wave the computer goes through a control
sequence, schematically represented in Figure 4. SIne the spec-
imen may twist due to an uneven distribution of thermal stresses,
the alignment motor rotates the pendulum through a Sear train to
the same reference position at the start of each control sequence.
To initiate the oscillations, a second motor rotates the pendulum
a specified angular displacement against the tension of a spring.
The pendulum is held in this cocked position until oscillations
set up by the alignment and cocking procedure have decayed, at
which time the clutch is disengaged and the pendulum swings back

Sso as to oscillate about the reference position. The data are
then collected and reduced. The temperature (or time, for iso-
thermal runs) is measured with the specimen in the cocked position
and again after the data are collected. After plotting the re-
duced data, the oscillation is monitored until it decays to within
specified limits and the cycle repeats.

The data obtained from the torsion pendulum can be displayed
in various modes (4): the shear modulus G' is given by

.)2 A2
2w2G, I KI( 1 + ()

or by its approximation

G' a 472 KI ) (2)

where P is the period, A is the logarithmic decrement and K is a
geometric constant. In a TBA experiment, where K is unknown, the
relative rigidity ((li/p) 2] is measured. Usually the logarithmic
decrement term in equation (1) is negligible; only in the transi-
tion regions, where A > 0.6, does it become greater than one per-
cent. In Figure 5 both the shear modulus and its approximation
are plotted (5, 6): the curves are indistinguishable except in
the transition regions. The energy lost during the deformation
can be displayed In a variety of ways (Figure 5): loss modulus

C" - 4wKI*/?, (3)

logarithmic decrement

G"
A d w r F wtan6, (4)

and damping coefficient a. A shift ts observed in the maimum by
* which the transition temperature Is Identified: for erle,

TS(G") 4 Tg(6) 4 TI(a) for a solid-to-rubber transition. (for a
rubber-to-solid transition the shift occurs in the reverse order.)
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Software

An efficient algorithm is required to monitor the oscillatory
wave signal in real time. The flow chart is shown in Figure 6.
The algorithm is used to monitor the wave while waiting for it to
decay (Figure 4: prior to I and between IV and V), and to collect
the data (Figure 4: VI) for subsequent analysis. The routine
will provide the approximate location of the extrao (peaks) in
real time at a scan rate of up to 75 points per second. If a scan
rate faster than 75 points per second is required, the maxima and
minima are located after the data have been collected and before
initiation of the next wave.

In order to digitize the signal efficiently, the scan rate
(digitization rate) S. must be chosen to match the characteristics
of the oscillations. The optimum scan rate is a function of the
period (P) of the oscillation, the number of data points (N) col-
lected per wave, the time required for the oscillations to decay
to a specified limit, and the method of analysis used. The scan
rate corresponding to 40 points per cycle (S - 40/P) provides an
adequate representation of the oscillations for most data reduc-
tion methods (see later). A rough estimate of the period is ob-
tained from the first quarter cycle after initiation, and the scan
rate is adjusted accordingly. To locate the peaks, an interval
consisting of 1 + 4R (where R is a function of scan rate, usually
equal to 4) data points moves along as the data are acquired, and

AW the local maxima and minima are located by determining whether the
center datum point of the interval is greater than (for a maximum)
or less than (for a minimum) both the first and last data points
of that interval. As soon as this set of criteria is met the
center datum point is stored: the next peak is then sought. The
reason for using more than three consecutive data points is to
insure that a noisy signal does not simulate a maxium or minimum.
This method, although quite crude, Is mch faster than one which
involves taking a derivative of the data to locate the peaks.
After all the data points have been collected, an approximate
determination of the peaks is made by searching for t-o. maximum or
minimum among the data points within each of the intervals in
which a maximm or mini um was detected.

Data Reduction. The oscillatory motion of a freely moving
torsion pendulum has been described by an equation of motion (I.):

I dle/dt2 + 'dyn dO/dt + CdynO - 0 (5)

where I is the moment of inertia, rodyn is the dynamic viscosity,
Od is the elastic shear modulus, 0 is the angular deformation,
ant is the time. The solution is a damped sine wave:

6 = oexp(-at)cos(wt + *) (6)
A0
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where 0. is a constant; a is the damping coefficient,

b11 a 1dn21; (7)

w in the natural angular frequency (radianslsec),

-(.§;r.) -(211 8
and # is a phase angle. The shear modulus. G's* and loss modulus,
Gcan be derived from information In the wave:

G- KI(w2 + as2  (9)4

arnd G"- Maw (10)

where K is a geometric constant.

Peak Finding Method. Since the approximate location of the
peaks has already been determined, the data points about each peak
are fitted to a quadratic equation

e - a+ bt + Ct 2  (11)

by a least squares method. The optimum number of data points to
be used in fitting the quadratic equation to the data has been
determined to be those im the interval t 0.2w (7). Since the data
were obtained at a scan rate such that 40 points per cycle were
collected, the number of points used for fitting a quadratic is
(0.0n/20r40 - 8; because the calculations require an odd number of
data points, 9 data points are used. Linear least squares fitting
of the experimental data points to the quadratic equation requires
minimization of the su ma tion of residuals

(n 0) (12)

where fiu a +bt i+ ct 12  (13)

and Oi are experimentally observed data at times ti. From the re-
quirement that Q mat be minliied,

where A, a a A2  b, and A3 -*

this results in a set of three linear equations written In matrix

form:
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11 ti t4 A h2i

± ± i

I If

If the time-axis data are offset so that the central datum point
is zero, the odd powered summations are identically equal to zero,
thus simplifying the matrix. The solution to this set of equa-
tions provides the parameters of the quadratic equation. The best
estimate of the peak position is obtained from the first deriva-
tive

d a b + 2ct a, (16)

tp - (17)
an 

2c

b bn2  b 2ep a + b(- -r +(- -) a

This procedure is performed for the first minimum and the follow-
ing maximum, as well as for the last pair (the selection of which
depends on the damping), and the period is calculated by dividing
the elapsed time between the maxima by the number of cycles. The
logarithmic decrement is obtained from the relation

S )ln[(e _e- o (i - 3, 5, 7 ...) (19)

where 0 is the amplitude of the ith extramum.

Least Squares Method (8). A torsion pendulum specimen has a
tendency to change its rotational orientation during the course of
an experiment due to an uneven distribution of stresses caused by
volume expansion and contraction. This results in a drift in the
baseline of the wave signal which can be represented by

o 0 B exp(-at)cos(wt + $) + It + C (20)0 o
!where 3 Is the drift coefficient and C Is the offset. The cortes-

ponding differential equation can be written as

S"



rd 2e
, d2e dO

2o&+ 2 + (L2 + W2)e - C(a2 + W2) _ 2aB -B(Q 2 +w2)t -0
(21)

which may be simplified to

d20 de
D t + A, t + A2 e + A t+ A 0. (22)

t 21  3 4

Ak (k - 1 to 4) are the parameters fitted by a linear I tst
squares analysis to determine

i A,a a 2 (23)

and= A1 2 2an - [A2 - (t) T (24)

The derivative values of 0 at any point i are calculated numeri-
cally from a quadratic equation which uses five consecutive points
to obtain the first and second derivatives:

d 6T " r'2 i-2 - -l 1 +  6i+l  + 2ei+2)
d~t - .2h +2i+2)(25)

d2e 2e -1 e - 20
S-2 7hz + 1+2 (26)

where h is the time interval between data points.
The linear least squares fitting of n experimental data

+ . points to the differential form of the equation of motion involves
minimization of the summation

n
Q (fi Di) 2  (27)

where

d2 9 dei
fi P + Al I+ 28i +A 3 ti+ 4  (28)

Sis calculated from experimental data and D is identically zero by
definition. From the requirement that Q minimized.

.2 - 2 - f ('I ) " 0 (k 1 I to 4). (29)
1A k ft a

This sat of linear equations can be written in matrix notation:

................. .............. I, I P I
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- (30)

-- t i t i . . .*1 1  8%1  1ti A3 4I

When this expression is solved for Ak , the values of a and w are
obtained (Equations 23 and 24).

Non-Linear Least Squares Method (9). Assuming that (from
equation 20)

8 - A exp(-A2t)cos(A3 t + A4) + A5t + A6 (31)

where now AI - 6o, A2 - a, A - 2w/P, A4 - *, A5 - B and A - C
is an adequate representatioA of the solution to the equation of
motion of a torsion pendulum, the parameters Ak (k - 1 to 6) can
be determined by fitting the data (91, tj; £ - 1 to n) to thesolution.

If the values of the parameters Ak were known, it would be
possible to evaluate

f, M Alexp(- A2t')cos(A3 ti + A4) + A5 t, + A6  (32)

for each tt to obtain a set of "true" residuals

r, a f e (i- 1 to n). (33)i -i

L A "true" residual would represent the difference between the
6 actual function value at ti and the empirical value 0j. These

"true" residuals cannot be calculated because the actual values of
the parameters Ak are not known.

However, initial estimates of the parameters A4 can be ob-
tained from other methods, or a previous wave, and "computed"
residuals can be calculated:

R Aexp(-A t)Cos(t (34) A

(i - 1 to n)

* i _ _ _ _ _ _

-.--
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Improved estimates of the parameters Ak can be obtained by a dif-
ferential correction technique based on least squares, provided
that the estimates Ak are sufficiently close to the actual values
of the parameters Ak to lead to convergence of the method. This
differential correction technique can be derived by first expand-
ing the function about Aj using a linear Taylor series expansion
of the form

f(tiv Alt A2 , ." A6) f(ti Al A;. .-. A;)

o af
+ f (A - A1) + 2 (A2 - A; + ... TA- (A - Ad (

M'1 1"A2 ' 6 6

so that a relation between the ri and Ri can be obtained. This
relation can be found by evaluating the equation at each value of
ti and subtracting 61 from both sides of the equation. Using the
definitions

6A k -A.k -A. (36)

and
f a t -t i , Aa f;

the result can be written in the form

f(ti , A1, A2, ..., A6 ) - 6i - f(ti , A0, A2 , ..., A6 )

+ (--)6AA1 + ... + (-) 6A6 -e, (i -Ito n) (38)
a6

The desired relation between the ri and Ri can then be found by
substituting the expressions for ri and Rj:

ri - Ri + (j-i)6A 1 + ... + (--6A (i - 1 to n). (39)
1A 6 6

This relation can be used to compute, from A;, a set of parameters
Ak that minimizes the sum of the squares of the "true" residuals
r i , i.e.,

n af I  af I

iQ -r + a- "Al + + (_-&-6A6 2 (40)

The function Q has a minimum value when all of its partials with
respect to the 6Ak are simultaneously zero:

4-

Il

It __ ____ ________
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af ~ Of S f
S(I~ -2 I(-,.)R~ + ()(j)Ai+0 n afi Offa

+ ( )6:)8A - 0 (k- I to 6). (41)

Rearranging,

n Ofi afi n afi afi
SA1  + . + 6A6iii -k I 

,T
n fi

(-A )R (k- I to 6) (42)

Evaluating this equation for each k, and writing the result in
matrix form, the normal equations are obtained:

If fif at if at If i Of af i fi i

(j4 2 f :A It It It It ! t I t it,OAI12 __1T II AM AIT- A

at It it f at I ~ of Of if it if 1 i
3iA 3 -,1 2

- (43)2jA 1 4 DA 2  IA2 MA3  SA Di~ A4 a* A A 3A6 2 M2i

if if t i at It at i t I t a

M SA U OAt 3A6  OAat iat ofa otfa t1 a ta

* where+ A4 ,( )

=A exP(-A2 t 1 )Cos(Aat i  4,(4

" -A~texp(A 2tf)cos(A3  A)

a f !i A4)ffIf I Io IO
f I I ! -f !'- I :A :A (45)

OAk

W 5 _AIIS_3A2_'AS_ _ _ __U.5 U 6

!I . ..... . If
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aA3 - "Altiexp('A2ti) sin (A3ti + A4),.46

M -A1exp(-A2t)sn(A3t i + A4). (47)

Bf 
i

- ti , (48)
a5

afl
1. (49)

The solution, 8Ak. of this set of normal equations is a first-
order approximation of the changes in Aj required to obtain the
parameters Ak. If any I6Akl > c (error limit). M is replaced by
Ak + 6Ak and the entire differential-correction procedure is re-
peated using these new estimates.

Fourier Transform Method. Another method of data reduction
is to take a fast Fourier transform (FFT) of the wave (10). As indi-
cated in Figure 7, the Fourier transform of a damped sine wave
with a single frequency is a single maximum in the frequency
domain at the frequency of the oscillation. The amplitude (H) of
the transformed data as a function of angular frequency (w) is
given by (11)

e [ CL2 (O2+W24.W2)2 + W2(%12_W~22)2i1%
H 0 2 02)2 00 (50)

(CL + 2W )2 + (2%w~)7
0

where 00 is the initial amplitude, a is the damping coefficient,
and wo is the natural angular frequency of the oscillation. The
amplitude of the peak is given by

H a2 2 (51)"max ct at [ +4w2 W 0- < ) (l
0

from which a, the damping coefficient, is obtained.
Discussion. The four methods of data reduction were used

to analyze the raw data of the same TBA specimen during a slow
(0.25oC/min) temperature scan (Figure 8). A comparison of
the spectra indicates that they all gave similar results over
the range of period (0.3 to 1.8 sec) and logarithmic decrement
(0.01 to 1.08) encountered in the experiment. (The automated
torsion pendulum has been used to reduce data with a range of
0.1 to 15 sec. for the period, and 0.001 to 4.0 for the

..- '
'..
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logarithmic decrement). In Figure 8 there is no appreciable dif-
ference in the relative rigidity, but in the logarithmic decrement
the non-linear least squares reduction method produces the smooth-
est results. followed by the peak-finding method. The linear
least squares and Fourier transform methods have considerable
scatter.-* The linear least squares method also results in a small
systematic difference in the logarithmic decrement from the other
three.

Although the peak-finding method is the simplest way of de-
riving the period and logarithmic decrement from the raw data, it
has some limitations in that at least 2.25 cycles of oscillation
are required in order to do the calculation. This is a problem
when the system approaches critical damping conditions. It also
Is difficult to calculate the logarithmic decrement at very low
damping (when the peak amplitude changes only slightly during the
time data is collected) due to the resolution of the digitizing
voltmeter. Of the four methods discussed, the peak finding method
is the most sensitive to the scan rate, since the number of data
points about each peak that are fitted to the three-parameter
quadratic equation should be at least nine as discussed earlier.
Therefore the scan rate, whica depends on the estimate of the
period. needs to be quite close to 40/P, where P Is the actual
period. Also, a systematic error is introduced when this method
is used, because the position of the peaks is a function of the
damping as well as the period. As can be seen in Figure 9, the
peaks shift to shorter times as the damping increases.

The least squares fitting method overcomes limitations of the
peak finding method, but introduces some errors of its own. It is
not as sensitive to the scan rate, as long as S >> 2/P (the
Nyquist frequency), and its accuracy increases with increasing
number of data points. It was found empirically (8) that the
error was reduced if an integral number of cycles was used in the
analysis. Some error is introduced due to the fact that first and
second derivatives of the raw data have to be taken.

The use of the non-linear least squares method does not re-
quire any derivatives, but needs an initial estimation and takes
more time to compute, since several iterations (usually 3 or 4)

are necessary to reduce the difference between the estimated andcalculated values of the damping coefficient to within 0.1%. But
since this method only requires between 100 and 150 data points
without a loss in accuracy compared to as'many as 1000 for the
peak-f inding and least squares methods, the scan rate can be re-
duced as much as 90% and the time required for the calculations is
reduced to the order of a minute.

The Fourier transform method requires a minium of 1024 data
points to provide enough resolution to calculate the damping co-
efficient. The FFT of 1024 data points takes approximately a amn-
ute with the NP 9825B computer, so this constitutes a practical
limit in resolution due to computer memory site and tim consider-
ations. So as not to Introduce error, the daped oscillations
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must not be truncated; therefore it is Important to adjust the
scan rate and the number of data points so that the entire wave is
collected. The major problem with using the FF method is the
difficulty in obtaining accurate values of a; the curve is
Laurentian, and hence its amplitude at the maximum is difficult to
obtain. One way around this is to use a curve fitting procedure,
but then there is no advantage in using this method. Some alter-
natives may be to use a larger and faster computer, or a dedicated
microprocessor such as the spectrum analyzer (HP 3582A), which can
compute the FFT in real time. A practical feature of the FMT is
in the display of the transformed data; any non-homogeneity of the
signal due to other modes of notion will appear as secondary peaks,
and so this method serves as an excellent way to monitor the
oscillations.

Although comparison of the four methods shows that the
smoothest reduced data for the given experiment were obtained
using the non-linear least squares method, the ultimate quality
depends on the quality of the sensor signals of the experiment.
Published superior TBA spectra obtained using the linear least
squares method (), and the peak-finding method using an analog
computer (2). were presumabiy the consequence of a better basic
experiment than the one used in this report to compare (as in
Figure 8) the data reduction methods.

Calibration

A calibration wire whose shear modulus is known can be used
to determine the moment of inertia of the pendulum assembly, so
that quantitative masuraments of the dynamic mechanical proper-
ties of specimens can be made. The shear modulus of the calibra-
tion wire is obtained by measuring the period of oscillation of a
simple torsion pendulum consisting of an aluminum rod suspended by
the wire. The moment of Inertia of this system is given by

* r2  a (52)

where u is the mss, r Is the radius and t is the length of the
rod.

The she modulus G' of a wire Ia given by

C'1" (53)

Obere L is the length and R Is the radius of the wire. With the
calibration wire (wh-ao sheer modulus was determined to be 9.789 x

. 1011 dyme/cl) a a specimem in the automated torsion pendulum,
4 the moment of inertia of the pendulum that was used routinely in

the subsequent experiment@ was determined to be 138.7 $-c . The
shear modulus of a film of known dimensions can then be calculated

*
. . .. *

,/
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from the period and logarithmic decrement using the equation (4):

44IL 12

where 1 is a form factor:

I - (1 - 0.63 b/a), (55)
3

a Is the width, b is the thickness (b - a13), L is the length, u
is the mass supported by the specimen and g is the gravitational
constant.

Comparison of Torsion Pendulum and TBA

A film of an amine-cured epoxy, Epon 828 (Shell)/PACH-20
(DuPont) with T.M - 166"C, was cured by heating it to 250"C in a
helium atmosphere. The dynamic mechanical spectrum of this film
is shown in Figure 5. For ccparison, the corresponding spectrum
of a specimen consisting of a multifilamented glass braid impreg-
nated with the uncured resin and cured in the TBA apparatus by
heating It to 200*C under helium atmosphere is shown in Figure 10.

It has been reported (12) that the shear modulus as measured
by the torsion pendulum and TBA should differ only by a multipli-
cative constant below Tg and the logarithmic decrement should be
identical. Although the spectra of Epon 828(PAC(-20 obtained by
torsion pendulum and torsional braid analysis show transitions at
the same temperature (glass transition at 166C and a secondary
sub-glass transition at -28C), the results indicate that the
actual modulus and logarithmic decrement cannot be compared quanti-
tatively. In Figure 11 the relative rigidity (TBA) has been
shifted vertically for comparison with the torsion pendulum data;
a vertical shift on a logarithmic scale is equivalent to multi-
plying by a constant. It is evident by comparing the curves in
Figure 11 that there is only a qualitative correlation between them.

Conclusions

The automation of the torsion pendulum utilizing a desktop
computer eliminates the tedious data analysis previously associated
with that technique. Any one of four data reduction methods can
be used; the experimental conditions will determine which is the
optimum one to employ. The torsion pendulum technique provides
quantitative values of shear modulus and logarithmic decrement and
in the torsion braid mode provides a qualitative analysis of
materials, especially in the liquid-to-solid transition region.
In addition to providing the capability of using any one of four
data reduction techniques, the computer has the advantage of stor-
ing the data on magnetic tape, where it is available to be

N,
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accessed for further computation or to be plotted in whatever mode
is most suitable. Since the computer is easily programmable, the
software can readily be adapted to consider other variables or to
control the experiment in other ways.
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Figure Captions

Figure 1. Automated torsion pendulum: schematic. An analog

electrical signal is obtained from passing a light bea

through a pair of polarizers, one of which oscillates

with the pendulum. The pendulum is aligned for linear

response and initiated by a computer that also

processes the damped waves to provide the elastic

modulus and mechanical damping data which are plotted

on an XYY plotter versus temperature or time.

Figure 2. Automated torsion pendulum: system schematic for

interfacing with a digital computer. The torsion

pendulum has been interfaced with a digital desktop

computer (HP-9825B). The motors which align the

specimen and initiate the waves are under computer

control. The wave and amplified analog thermocouple

signals reach the computer digitized via a digital

voltmeter (UP-3437A). The scanner (UP-3495A) super-

vises the I/O activity. Upon receiving the digitized

raw data the computer calculates the frequency and

damping parameters, and plots the dynamic mechanical

properties of the specimen as a function of tempera-

ture and time.

Figure 3. Automated Torsion Pendulum: the pendulum is housed in

the cabinet at the left; the oven Is separated from

the optical transducer by an insulated 3/4 inch
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horizontal aluminum plate. The temperature controller,

digital voltmeter,scanner, and computer are in the

rack at the right. The atmosphere control panel and

liquid nitrogen container are shown In the background.

One of the authors (JBE) is seated at the console.

Figure 4. Automated torsion pendulum: control sequence.

I) Previous wave decays, drift detected and correc-

tion begins. II) Reference level of polarizer pair

reached. III) Wave initiating sequence begins.

IV) Decay of transients. V) Free oscillations begin.

VI) Data collected. VII) Control sequence repeated.

Figure 5. Dynamic mechanical spectrum (torsion pendulum) of a

cured film of Epon 828/PACM-20. Both the shear

modulus C' (C) and its approximation G' (0) are

plotted on the upper curve; the lower three curves

are loss modulus G" (o), logarithmic decrement A (*),

and damping coefficient a (+).

Figure 6. Flow diagram of data collection/peak-finding

algorithm.

Figure 7. Fourier Transform Method. The Fourier transform of

an exponentially damped sine wave of period P and

damping coefficient a is a single maximum at the

oscillation frequency whose amplitude is inversely

proportional to the damping coefficient.

4! 4

I
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Figure 8. Dynamic mechanical spectrum (TBA) of Epon 828/PACO-20

in which the relative rigidity and logarithmic

decrement have been calculated by four methods:

peak-finding [PKF (0)), linear least squares

[LSQ (C) , non-linear least squares [NLSQ (+)], and

fast Fourier transform [FFT (o)]. For clarity the

LSQ, NLSQ and FFT data have been displaced vertically

in equal increments from the PKF data.

Figure 9. Damped Sine Wave. Error in measuring period by peak-

finding method: the peaks of an exponentially

damped sine wave of single frequency (0.5 Hz) shift

to shorter times with increasing damping coefficient

(a values: - 0.05, -- 0.5, -.- 1.0, .... 1.5).

Fiture 10. Dynamic mechanical spectrum (TBA) of a cured composite

specimen (glass braid impregnated with Epon 828/PACM-

20 resin).

Figure 11. A comparison of torsion pendulum data obtained using

a film [G' (0). A (*)] and TEA data obtained using

a supported specimen [relative rigidity (0). A (o)].

4t1
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FOURIER TRANSFORM METHOD
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